Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, 09-17-2006
この前 の続き。確率の問題。こんなの
「8人」の中に誕生日・干支・血液型全て同じ人がいる確率は?
問題文はそのまま、8人にかぎかっこがついているのはなぜだろう?
まず、軽いところから。最後の血液型。
8人の血液型(+ - も入れて8種類)が違う確率は 7/8 x 6/8 x 5/8 x ... x 1/8= 約2.4% になります。とあるけど、まずこの掛け算の答は約 2.4% ではなくて約 0.24% になる。
でも、この計算は、全ての血液型の割合が同じじゃないと使えない。A+ も O- もみんな同じ割合という仮定じゃないと、この計算はできない。8人いて血液型8種類ある確率だから、AB- もその中にいないといけない。日本での AB- の確率は 0.05% らしいから、8人の血液型が違う確率がこんなに大きいはずがない。
ま、じゃ、「血液型8種類全ての割合が同じ」だとする。でも、もっと大きな間違いがこの解答にはある。
最後の部分。「8人の中に誕生日・干支・血液型が全て同じ人がいる確率は・・・ 約7.43% x 約95.3% x 約97.6% = 約6.92%」
この部分。
8人の中に一組以上誕生日が同じペアがある確率、一組以上干支が同じペアがある確率、一組以上血液型が同じである確率、を掛け合わせて、8人の中に一組以上、誕生日と干支と血液型が同じペアがある確率、としてしまっている。
おかしいね。
「AさんとBさんの誕生日が同じで、CさんとDさんの干支が同じで、EさんとFさんの血液型同じ」でなくて、求めたいのは「誕生日と干支と血液型、全てが同じペアがいる確率」だ。
約 7% で誕生日が同じペアがある。3人同じとか、2ペア以上同じってこともあるけど、ま、誕生日が同じ人が1組、2人いたとする。その2人の干支が同じじゃないといけないんだから、その確率は 1/12。もうこの時点で 7%/12 で 1% を切っている。さらに、誕生日も干支も同じだとして、さらに血液型も同じじゃなきゃいけない。
ま、計算しないけど、すごぉく小さいよね、この確率は。
松下君、がんばれ!
コメント
う~ん・・・。計算過程は大変難しいですが、とっても参考になりました!
なんだかこれだけ自信ありげにされると、疑いにくいけど、いろいろ間違いってあります。