Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, 04-06-2010

引き続き coupon collector's problem.

問2:15個買ったら,どれくらいの確率で全部そろうか.

15個というのは,6種類全部そろえるために買わなくてはいけない数の平均 (14.7) に一番近い数,ということ.

15個買って,6種類全部そろっている確率.いろんな求め方がありそうだ.

ほんとにいろいろあって,ここで書くより簡単でもっとすっきりしているのもあるけれどね.個人的な好みかな.スパゲティの問題 のときと似た考え方だ.

答2:6種類全部そろっている確率だけでなくて,一般的に「m 種類のおまけがある時,k 個買ったら x 種類そろった」という答をめざそう.例えば「6個買った時にちょうど4種類ある」ためには5個買った時点でちょうど3種類あるか,4種類あるかでないといけない.5個買った時点で2種類だったり,5種類だったりしたら,どうがんばっても6個で4種類にはなり得ない.

6個買った時に4種類ある確率は
(5個買った時に3種類ある確率)×(6個目が新しい種類)と
(5個買った時に4種類ある確率)×(6個目が新しくない確率)の和だ.

だから,一歩戻って5個買った時の確率が判らないと6個買った時の確率はわからない.それで,5個買った時の確率は,4個買った時の確率が判らないと判らない.そうやって,さかのぼって行かなくてはいけないので,結局1個買った時に1種類ある確率 (100%) から始めて順番に解いていく.

k 個買った時に x 種類そろっている確率を pk,x とする.おまけが m 種類あるとすると, と書ける.p1,1 = 1 だ.x が 0 だったり,x が k より大きかった場合は全て 0 として計算する.

p の前についているのは,k 個目が新しい確率と,k 個目が新しくない確率.

これで,いろいろ計算出来るのだけど,手計算しようとするとかなりめんどうくさい.15個買ったらうんぬん,という確率を求める場合でも,1個目,2個目,3個目...と順に計算しなくてはいけない.

それを計算した結果が,前のページグラフだ.

15個買って6種類全部そろっている確率だから「6個目でそろう」から「15個目でそろう」までの確率を全部足せば15個目までにそろう確率がわかる.拡大

15個目までに全部そろっている確率は 64%.全種類そろえるには,平均で約15個買えばいいのだけど,15個買って全部そろっている確率は 50%をかなり超えている.前ページのグラフが右にぐでぇと延びているから起こる現象.左右対称だったら,確率は 50%付近になる.

全部そろっている確率を 50%以上にしたいなぁ,と思ったら13個でよい.確率は 51%.

問3に続く.

おまけの問題:前置き
おまけの問題:問題
おまけの問題:答1
おまけの問題:答2
おまけの問題:答3
おまけの問題:発展問題

平成17 平成18 平成19 平成20 平成21 平成22 平成23 平成24 平成25 平成26 平成27 平成28 平成29 平成30 令和元 令和2 令和3 令和4 令和5 令和6 令和7 令和810111210111213141516171819202122232425262728293031日 火曜日|統計学コメント(0)

コメント

コメントの投稿

ブログ検索

カレンダー

JanFebMar AprMay JunJulAugSepOctNovDec 2005200620072008200920102011
- - - - 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 -

履歴

2020年01月 (1)

2019年11月 (1)

2019年10月 (1)

2019年08月 (1)

2019年07月 (1)

2019年05月 (1)

2019年03月 (1)

2019年02月 (1)

2019年01月 (1)

2018年12月 (1)

2018年11月 (1)

2018年10月 (1)

2018年09月 (1)

2018年08月 (1)

2018年07月 (1)

2018年06月 (1)

2018年05月 (1)

2018年04月 (2)

2018年03月 (1)

2018年01月 (1)

2017年12月 (1)

2017年11月 (1)

2017年10月 (1)

2017年09月 (1)

2017年08月 (1)

2017年07月 (1)

2017年06月 (1)

2017年05月 (1)

2017年04月 (1)

2017年03月 (1)

2017年02月 (1)

2017年01月 (1)

2016年12月 (1)

2016年11月 (1)

2016年09月 (1)

2016年08月 (1)

2016年07月 (1)

2016年05月 (1)

2016年04月 (1)

2016年03月 (1)

2016年02月 (1)

2016年01月 (1)

2015年12月 (1)

2015年07月 (1)

2015年06月 (2)

2015年05月 (2)

2015年04月 (3)

2015年03月 (2)

2015年02月 (1)

2015年01月 (3)

2014年12月 (1)

2014年11月 (1)

2014年10月 (2)

2014年09月 (2)

2014年08月 (2)

2014年07月 (1)

2014年06月 (1)

2014年05月 (2)

2014年04月 (1)

2014年03月 (2)

2014年02月 (1)

2014年01月 (2)

2013年12月 (1)

2013年11月 (3)

2013年10月 (2)

2013年09月 (1)

2013年08月 (4)

2013年07月 (1)

2013年06月 (2)

2013年05月 (2)

2013年04月 (3)

2013年03月 (1)

2013年02月 (1)

2013年01月 (4)

2012年12月 (1)

2012年11月 (3)

2012年10月 (1)

2012年09月 (1)

2012年08月 (3)

2012年07月 (3)

2012年06月 (2)

2012年05月 (6)

2012年04月 (2)

2012年03月 (8)

2012年02月 (2)

2012年01月 (1)

2011年12月 (6)

2011年11月 (5)

2011年10月 (4)

2011年09月 (6)

2011年08月 (9)

2011年07月 (5)

2011年06月 (5)

2011年05月 (5)

2011年04月 (6)

2011年03月 (17)

2011年02月 (6)

2011年01月 (10)

2010年12月 (10)

2010年11月 (4)

2010年10月 (6)

2010年09月 (5)

2010年08月 (11)

2010年07月 (8)

2010年06月 (8)

2010年05月 (3)

2010年04月 (8)

2010年03月 (11)

2010年02月 (4)

2010年01月 (8)

2009年12月 (6)

2009年11月 (6)

2009年10月 (6)

2009年09月 (7)

2009年08月 (6)

2009年07月 (10)

2009年06月 (10)

2009年05月 (10)

2009年04月 (6)

2009年03月 (7)

2009年02月 (9)

2009年01月 (12)

2008年12月 (6)

2008年11月 (10)

2008年10月 (8)

2008年09月 (9)

2008年08月 (12)

2008年07月 (8)

2008年06月 (12)

2008年05月 (12)

2008年04月 (12)

2008年03月 (11)

2008年02月 (10)

2008年01月 (10)

2007年12月 (12)

2007年11月 (14)

2007年10月 (13)

2007年09月 (11)

2007年08月 (16)

2007年07月 (10)

2007年06月 (10)

2007年05月 (6)

2007年04月 (10)

2007年03月 (13)

2007年02月 (10)

2007年01月 (8)

2006年12月 (13)

2006年11月 (15)

2006年10月 (9)

2006年09月 (8)

2006年08月 (18)

2006年07月 (14)

2006年06月 (16)

2006年05月 (23)

2006年04月 (20)

2006年03月 (12)

2006年02月 (14)

2006年01月 (21)

2005年12月 (20)

2005年11月 (17)

2005年10月 (18)

2005年09月 (16)

2005年08月 (10)

2005年07月 (6)