Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, 04-01-2010
問1:「一個ずつ買って,その場で開けて」という作戦でそろうまで買い続けると,平均で何個買うことになりますか?
答1:
1種類手に入れるには 1個買えば良い.
次に買うのが新たな種類,つまり 1個目と同じでない確率は 5/6.確率が 5/6 であることが起こるまでの試行の平均回数は(話すと長いんだけど)6/5.
次に買うのが新たな種類,つまり 1個目と 2個目と同じでない確率は 4/6.確率が 4/6 であることが起こるまでの試行の平均回数は(話すと長いんだけど)6/4.次に買うのが新たな種類,つまり 1個目と 2個目と 3個目と同じでない確率は 3/6.確率が 3/6 であることが起こるまでの試行の平均回数は(話すと長いんだけど)6/3.
そんな訳で 6種類そろえるために買う数の平均(期待値)は
1 + 6/5 + 6/4 + 6/3 + 6/2 + 6/1 = 14.7.
シンプルに求められるところが面白いけれど,この平均にはどんな意味があるのか.
何個買えば 6種類そろうか,というのをグラフにしてみるとわかるのだけど,右側にぐでーと延びている.こういう左右対称でないことがらの平均というのは,うさんくさいことが多い.
拡大
上のグラフは x回目で 6種類そろう,というのを表している.一番確率が高いのは 11回目で終わる.8.4% だ.(平均に一番近い)15回目で終わる確率は 6.1%.ぐでーと右側に延びているせいで平均値が右に引っ張られてしまっている.
平均で約15個買えばいいですよ.でも15個目でぴったり終わる確率というのは,6%でしかない.しかも,15個目で終わる,というのが一番確率が高い訳でもない.上のグラフから判るように,9~14個目で終わる確率のほうが高い.
何個目で6種類そろいますか?と訊かれて,答をひとつあげろと言われたら11個目と答えるのが最善だろう.一番確率が高い.
おまけの問題:前置き
おまけの問題:問題
おまけの問題:答1
おまけの問題:答2
おまけの問題:答3
おまけの問題:発展問題